Οι τεχνικές «λεπτομέρειες» του Νόμπελ Φυσικής 2012

15 Νοεμβρίου 2012

Οι Serge Haroche (Σερζ Αρός) και David J. Wineland (Ντέιβιντ Γουάινλαντ), που βραβεύθηκαν φέτος με το νόμπελ φυσικής, άνοιξαν την πόρτα που μας οδηγεί σε μια νέα εποχή πειραματισμού στην κβαντική φυσική, πραγματοποιώντας άμεση παρατήρηση απομονωμένων κβαντικών συστημάτων χωρίς αυτά να καταστρέφονται. Επιχειρούμε μια απλοποιημένη παρουσίαση των πρωτοποριακών τους μεθόδων.

Για μεμονωμένα σωματίδια φωτός ή ύλης οι νόμοι της κλασικής φυσικής παύουν να ισχύουν και δίνουν τη θέση τους στους «εξωτικούς» νόμους της κβαντικής φυσικής. Ένα σωματίδιο δεν είναι εύκολο να απομονωθεί από το περιβάλλον του και χάνει τις μυστηριώδεις κβαντικές ιδιότητες μόλις αλληλεπιδράσει με τον εξωτερικό κόσμο. Οι Haroche και Wineland με τις έξυπνες εργαστηριακές τους μεθόδους κατάφεραν να ελέγξουν και να μετρήσουν πολύ «ευαίσθητες» κβαντικές καταστάσεις και οδήγησαν το πεδίο της έρευνάς τους στα πρώτα βήματα προς την κατασκευή ενός νέου τύπου σουπερ – υπολογιστών, βασισμένων στην κβαντική φυσική – τους κβαντικούς υπολογιστές.

Αυτές οι μέθοδοι οδήγησαν επίσης στην κατασκευή εξαιρετικής ακρίβειας ρολογιών που θα μπορούσαν να αποτελέσουν τη μελλοντική βάση για την κατασκευή ενός νέου προτύπου χρόνου, με πολύ μεγαλύτερη ακρίβεια από τα σημερινά ατομικά ρολόγια καισίου.

Και οι δυο βραβευμένοι επιστήμονες εργάστηκαν στον τομέα της κβαντικής οπτικής μελετώντας την θεμελιώδη αλληλεπίδραση μεταξύ φωτός και ύλης, ένα πεδίο που γνώρισε σημαντική πρόοδο από τα μέσα της δεκαετίας του 1980 και μετά. Οι μέθοδοί τους έχουν πολλά κοινά.

Ο David Wineland παγίδευσε ηλεκτρικά φορτισμένα άτομα (ιόντα), τα έλεγξε και πραγματοποίησε μετρήσεις με φωτόνια. Ο Serge Haroche έκανε την αντίθετη προσέγγιση: έλεγξε και μέτρησε παγιδευμένα φωτόνια στέλνοντας άτομα μέσα στην παγίδα.

Eλέγχοντας απομονωμένα φορτισμένα άτομα

Στο εργαστήριο του David Wineland στο Boulder του Colorado, ιόντα διατηρούνται μέσα σε μια παγίδα με τη χρήση κατάλληλων ηλεκτρικών πεδίων. Ένα λέιζερ χρησιμοποιείται για να θέσει το ιόν στη χαμηλότερη ενεργειακή του κατάσταση και επιτρέποντας έτσι τη μελέτη κβαντικών φαινομένων με το παγιδευμένο ιόν.

Στο εργαστήριο του David Wineland στο Boulder του Colorado, ιόντα εγκλωβίζονται σε παγίδες χρησιμοποιώντας κατάλληλα ηλεκτρικά πεδία. Τα σωματίδια είναι απομονωμένα από τη θερμική και τις άλλες ακτινοβολίες του περιβάλλοντος, καθώς τα πειράματα διεξάγονται στο κενό και σε εξαιρετικά χαμηλές θερμοκρασίες.

Ένα από τα μυστικά πίσω από τα επιτεύγματα του Wineland είναι η μαεστρία του στη χρήση των ακτίνων λέιζερ και την δημιουργία παλμών λέιζερ. Ένα λέιζερ χρησιμοποιείται για να περιορίσει την θερμική κίνηση του ιόντος στην παγίδα, θέτοντας το ιόν στην χαμηλότερη ενεργειακή του κατάσταση και επιτρέποντας έτσι τη μελέτη των κβαντικών φαινομένων στην παγίδα ιόντων.

Ένας προσεκτικά ρυθμισμένος παλμός λέιζερ μπορεί να θέσει το ιόν σε μια κατάσταση επαλληλίας, όπου το ιόν βρίσκεται ταυτόχρονα σε δυο διαφορετικές καταστάσεις.

Για παράδειγμα, το ιόν μπορεί να προετοιμαστεί ώστε να καταλάβει δυο διαφορετικά ενεργειακά επίπεδα ταυτοχρόνως. Ξεκινά από ένα χαμηλότερο επίπεδο ενέργειας και ο παλμός λέιζερ ωθεί το ιόν μέχρι τα μισό της υψηλότερης ενέργειας, έτσι ώστε αυτό να βρίσκεται μεταξύ των επιπέδων, σε μια υπέρθεση ενεργειακών καταστάσεων, με ίση πιθανότητα να καταλήξει σε οποιοδήποτε από αυτές. Με τον τρόπο αυτό μπορεί να μελετηθεί μια κβαντική υπέρθεση ιόντων.

Eλέγχοντας απομονωμένα φωτόνια

Ο Serge Haroche και η ερευνητική του ομάδα χρησιμοποίησε μια διαφορετική μέθοδο για να αποκαλύψει τα μυστήρια του κβαντικού κόσμου.

Στο εργαστήριό του στο Παρίσι, φωτόνια μικροκυματικής συχνότητας ανακλώνται συνεχώς μεταξύ δυο καθρεπτών που απέχουν 3 εκατοστά μεταξύ τους. Οι καθρέπτες είναι κατασκευασμένοι από υπεραγώγιμα υλικά – τελευταία λέξη της τεχνολογίας – και ψύχονται σε θερμοκρασίες πολύ κοντά στο απόλυτο μηδέν.

Στο εργαστήριο του Serge Haroche στο Παρίσι, σε συνθήκες κενού και σε θερμοκρασία που αγγίζει το απόλυτο μηδέν, τα φωτόνια με μικροκυματική συχνότητα ανακλώνται συνεχώς μπρος-πίσω, σε μια μικρή κοιλότητα μεταξύ δυο –σχεδόν τέλειων – κατόπτρων. Με τη μέθοδο αυτή ο Haroche και η ομάδα του μπόρεσαν να μετρήσουν τα φωτόνια στο εσωτερικό της κοιλότητας, όπως ένα παιδί μετρά βόλους σε ένα μπολ. Αυτό μπορεί να ακούγεται εύκολο, αλλά απαιτεί εξαιρετική επιδεξιότητα διότι τα φωτόνια, σε αντίθεση με τους βόλους καταστρέφονται αμέσως όταν έρχονται σε επαφή με τον έξω κόσμο.

Τα υλικά αυτά είναι τόσο ανακλαστικά που ένα απλό φωτόνιο μπορεί να ανακλάται μπρος πίσω στη κοιλότητα για τουλάχιστον 1/10 του δευτερολέπτου, μέχρι να χαθεί ή να απορροφηθεί. Σ’ αυτό το ρεκόρ «διάρκειας ζωής» του, το φωτόνιο διανύει 40.000 χιλιόμετρα, απόσταση που ισοδυναμεί περίπου με μία περιφορά γύρω από τη Γη. Ο χρόνος αυτός είναι αρκετός για τους πειραματιστές έτσι ώστε να πραγματοποιήσουν «κβαντικούς χειρισμούς» στο παγιδευμένο φωτόνιο.

Ο Haroche χρησιμοποίησε ειδικά προετοιμασμένα άτομα, τα επονομαζόμενα άτομα Rydberg (από το όνομα του Σουηδού φυσικού Johannes Rydberg), τόσο για τον έλεγχο όσο και για την μέτρηση του μικροκυματικής συχνότητας φωτονίου στην κοιλότητα.

Ένα άτομο Rydberg έχει ακτίνα περίπου 125 νανόμετρα, η οποία είναι περίπου 1000 φορές μεγαλύτερη από τα κοινά άτομα. Αυτά τα γιγαντιαία σε σχήμα «λουκουμά» άτομα στέλνονται στην κοιλότητα ένα προς ένα με κατάλληλη ταχύτητα, έτσι ώστε η αλληλεπίδρασή τους με τα φωτόνια να γίνεται με ελεγχόμενο τρόπο.

Το άτομο Rydberg διασχίζει την κοιλότητα και εξέρχεται απ’ αυτήν, αφήνοντας πίσω το φωτόνιο μικροκυματικής συχνότητας. Αλλά η αλληλεπίδραση μεταξύ του φωτονίου και του ατόμου έχει ως αποτέλεσμα την αλλαγή φάσης της κβαντικής κατάστασης του ατόμου: αν φανταστούμε την κβαντική κατάσταση του ατόμου ως ένα κύμα, τα όρη και οι κοιλάδες του μετατοπίζονται. Αυτή η μετατόπιση φάσης μπορεί να μετρηθεί όταν το άτομο εξέλθει από την κοιλότητα, αποκαλύπτοντας έτσι τον τρόπο αυτό την παρουσία ή την απουσία του φωτονίου μέσα στην κοιλότητα. Χωρίς φωτόνιο δεν υπάρχει μετατόπιση φάσης. Ο Haroche μπόρεσε με τον τρόπο αυτό να μελετήσει απομονωμένα φωτόνια χωρίς να τα καταστρέψει.

Πηγή: Ένωση Ελλήνων Φυσικών & THE ROYAL SWEDISH ACADEMY OF SCIENCES